HUS

TURNED WASHER

COMPATIBILITY

It is the ideal coupling for countersunk screws (HBS, VGS, SBS-SPP, SCI, etc.) when the axial strength of the connection is to be increased.

TIMBER-TO-METAL

It is the optimal choice for connections on metal plates with cylindrical holes.

HUS EVO

The HUS EVO version increases the washer's corrosion resistance due to the special surface treatment. This allows it to be used in service class 3 and atmospheric corrosion class C4.

HUS 15°

The 15° angled washer is specifically designed for particular timber-to-metal applications where just a small angle is needed for screw insertion. The HUS BAND double-sided adhesive tape holds the washer in place during overhead applications.

MATERIAL

HUS 15°

aluminium alloy EN AW 6082-T6

HUS

electrogalvanized carbon steel

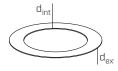
HUS EVO

carbon steel with C4 EVO coating

HUS A4

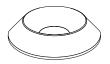
A4 | AISI316 austenitic stainless steel

FIELDS OF USE


- thin, thick metal plates with cylindrical holes
- timber based panels
- solid timber and glulam
- CLT and LVL
- · high density woods

■ CODES AND DIMENSIONS

HUS 15° - 15° angled washer


CODE	d _{HBS}	d_{VGS}	pcs
	[mm]	[mm]	
HUS815	8	9	50

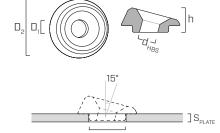
HUS BAND - double-sided adhesive for HUS washers

CODE	d _{int}	d_{ext}	pcs
	[mm]	[mm]	
HUSBAND	22	30	50

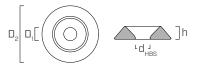
Compatible with HUS815, HUS10, HUS12, HUS10A4.

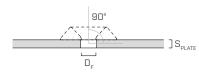
HUS - turned washer

CODE	d _{HBS} [mm]	d _{VGS} [mm]	pcs
HUS6	6	-	100
HUS8	8	9	50
HUS10	10	11	50
HUS12	12	13	25


HUS EVO - turned washer

CODE	d _{HBS EVO} [mm]	d _{VGS EVO} [mm]	pcs
HUSEVO6	6	-	100
HUSEVO8	8	9	50


HUS A4 - turned washer


CODE	d _{SCI} [mm]	d _{VGS A4} [mm]	pcs
HUS6A4	6	-	100
HUS8A4	8	9	100
HUS10A4	-	11	50

■ GEOMETRY AND MECHANICAL CHARACTERISTICS

HUS 15°

HUS - HUS EVO - HUS A4

GEOMETRY

Washer			HUS815	HUS6 HUSEVO6 HUS6A4	HUS8 HUSEVO8 HUS8A4	HUS10 HUS10A4	HUS12
Internal diameter	D_1	[mm]	9,50	7,50	8,50	10,80	14,00
External diameter	D_2	[mm]	31,40	20,00	25,00	30,00	37,00
Height	h	[mm]	13,60	4,50	5,50	6,50	8,50
Plate hole diameter (1)	D_F	[mm]	20÷22	6,5÷8,0	8,5÷10,0	10,5÷12,0	12,5÷14,0
Steel plate thickness	Spiate	[mm]	4÷18	-	-	-	-

 $^{^{(1)}}$ The choice of diameter is also linked to the diameter of the screw used.

CHARACTERISTIC MECHANICAL PARAMETERS

		softwood (softwood)	
Head-pull-through parameter	f _{head,k} [N/mm²]	10,5	
Associated density	ρ_a [kg/m ³]	350	
Calculation density	ρ_k [kg/m ³]	≤ 440	

For applications with different materials or with high density please see ETA-11/0030.

■ STRUCTURAL VALUES | TIMBER

HUS 15° SHEAR											
geometry				steel-to-timber steel-to-timber thin plate thick plate				st	eel-to-timber thin plate	steel-to-timber thick plate	
			d,	Splate	Splant		Splare		Source		
	d _{1,HBS}	L	b	S _{PLATE}	R _{V,k}	S _{PLATE}	R _{V,k}	S _{PLATE}	$R_{V,k}$	S _{PLATE}	R _{V,k}
	[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]
		80	52		3,61		4,93		3,74		5,11
HUS		100	52		3,86		4,93		4,00		5,11
15°	8	120÷140	60	4	4,05	8	5,13	4	4,20	8	5,31
_0		160÷280	80		4,54		5,62		4,70		5,81
		≥ 300	100		5,03		6,10		5,21		6,32

■ STRUCTURAL VALUES | CLT

HUS 15	ō°			SHEAR										
geometry				steel-CLT thin plate			steel-CLT thick plate		steel-CLT thin plate		steel-CLT thick plate			
			d,	SPLATE	→ → →	Sp. Market		Spikit	S _{PLATE}		Spure			
	d _{1,HBS}	L [mm]	b [mm]	S _{PLATE} [mm]	R_{V,k} [kN]	S _{PLATE} [mm]	R_{V,k} [kN]	S _{PLATE} [mm]	R_{V,k} [kN]	S _{PLATE} [mm]	R _{V,k} [kN]			
	[]	80	52	[]	3,28	[]	4,67	[]	3,40	[]	4,83			
		100	52		3,65		4,67		3,77		4,83			
HUS 15°	8	120÷140	60	4	3,83	8	4,85	4	3,96	8	5,02			
13		160÷280	80	4,28		5,30		4,43		5,49				
		≥ 300	100		4,73		5,75		4,90		5,96			

HUS/HUS EVO

HUS/F	HUS EV	U					TENSION					
	geo	metry			to-timber timber-to-timber 290° ε=0°			steel-to-timber thin plate		to-timber ck plate	head pull-through with washer	
		A		A		Splan		SPLATE				
	d _{1,HBS}	L	b	Α	R _{V,90,k}	Α	$R_{V,0,k}$	S _{PLATE}	$R_{V,k}$	S _{PLATE}	$R_{V,k}$	R _{head,k}
	[mm]	[mm]	[mm]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[mm]	[kN]	[kN]
		80	40	35	2,38	35	1,20		2,43		3,12	4,53
HUS		90	50	35	2,57	35	1,38		2,61		3,31	4,53
HUS-	6	100	50	45	2,61	45	1,38	3	2,61	6	3,31	4,53
EVO		110÷130	60	45÷65	2,80	45÷65	1,58		2,80		3,49	4,53
		≥ 140	75	≥ 60	2,80	≥ 60	1,69		3,09		3,78	4,53
		80	52	22	2,98	22	1,58		3,79		5,11	7,08
HUS		100	52	42	3,78	42	1,95		4,00		5,11	7,08
HUS-	8	120÷140	60	54÷74	4,20	54÷74	2,13	4	4,20	8	5,31	7,08
EVO		160÷280	80	74÷194	4,45	74÷194	2,61		4,70		5,81	7,08
		≥ 300	100	≥ 194	4,45	≥ 194	2,79		5,21		6,32	7,08
		80	52	21	3,32	21	1,86		4,30		6,55	10,20
		100	52	41	4,73	41	2,41		5,51		7,12	10,20
HUS	10	120	60	53	5,50	53	2,75	5	5,76	10	7,37	10,20
поз	10	140	60	73	5,76	73	2,75	5	5,76	10	7,37	10,20
		160÷280	80	73÷193	6,40	73÷193	3,28		6,40		8,00	10,20
		≥ 300	100	≥ 193	6,42	≥ 193	3,87		7,03		8,63	10,20
		120	80	31	5,57	31	3,27		7,55		9,79	15,51
HUS	12	160÷280	80	71÷191	7,81	71÷191	3,88	6	7,81	12	9,79	15,51
		≥ 320	120	≥ 191	8,66	≥ 191	4,98		9,32		11,30	15,51

 ε = screw-to-grain angle

GENERAL PRINCIPLES

- Characteristic values comply with the EN 1995:2014 standard in accordance with ETA-11/0030.
- Design values can be obtained from characteristic values as follows:

$$R_d = \frac{R_k \cdot k_{mod}}{\gamma_M}$$

The coefficients $\gamma_{\mbox{\scriptsize M}}$ and $k_{\mbox{\scriptsize mod}}$ should be taken according to the current regulations used for the calculation.

- For the mechanical strength values and the geometry of the screws and washers, reference was made to ETA-11/0030.
- Sizing and verification of the timber elements and metal plates must be done separately.
- The values in the table are independent of the load-to-grain angle.
- The screws must be positioned in accordance with the minimum distances.
- The characteristic shear resistances are calculated for screws inserted without pre-drilling hole. In the case of screws inserted with pre-drilling hole, greater resistance values can be obtained.
- Shear strengths were calculated considering the threaded part fully inserted in the second element.
- The characteristic strength to head pull-through with washer was calculated using timber elements.

 The characteristic strength to himber connections, appearable the steel to silve the strength of the strength of
 - In the case of steel-to-timber connections, generally the steel tensile strength is binding with respect to head separation or pull-through.
- For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

NOTES

- The characteristic steel-timber shear strengths were evaluated by considering the bearing plane of the washer parallel to the grains.
- The characteristic plate shear strengths are evaluated considering the case of thin plate (SpLATE = 0.5 d₁) and thick plate (SpLATE = d₁) .
- A density of $\rho_k = 385 \, \text{kg/m}^3$ for the timber elements and $\rho_k = 350 \, \text{kg/m}^3$ for the CLT elements was considered during the calculation. For different ρ_k values, the strength values in the table can be converted by the k_{dens} coefficient (see page 34).
- The characteristic values on CLT are according to the national specifications ÖNORM EN 1995 - Annex K.
- The characteristic shear strength is independent from the direction of the grain of the CLT panels outer layer.
- The characteristic shear and pull-through strength of the head with HUS on CLT can be found on page 39.
- For available HBS and HBS EVO screw sizes and structural values see pages 30 and 52.
- Characteristic strengths for HUS A4 can be found on page 323.

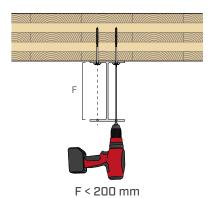
HUS 15° INSTALLATION

Drill a D_F = 20 mm diameter hole in the metal plate at the insertion point of the HUS815 washer.

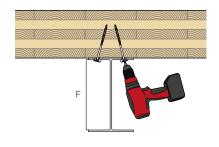
We recommend applying HUSBAND adhesive underneath the HUS815 washer to facilitate application.

Remove the liner and apply the washer at the hole, paying attention to the insertion direction.

Drill a guide hole with a diameter of 5 mm and a minimum length of 20 mm, preferably using the JIGVGU945 template to ensure the correct installation direction.

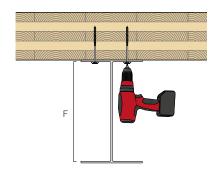

Install the HBS screw of the desired length. Do not use pulse screw guns.
Pay attention when tightening the con-

nection.



Installation completed. The 15° screw angle ensures that the distance to the head of the panel (or beam) is maintained.

STEEL-TIMBER INSTALLATION FROM BELOW



If the clearance (F) is small, the screws are installed using a long insert; both flanges must be drilled.

F = 200 ÷ 300 mm

In this F range, there are not enough long bits and not enough free space for the operator to manoeuvre. The slight inclination of the HUS 15° allows for easy fastening.

F > 300 mm

When sufficient free space is available for installation, a HUS washer can also be used, within the minimum distances.

RELATED PRODUCTS

